Foreign RNA Induces the Degradation of Mitochondrial Antiviral Signaling Protein (MAVS): The Role of Intracellular Antiviral Factors
نویسندگان
چکیده
Mitochondrial antiviral signaling protein (MAVS) is an essential adaptor molecule that is responsible for antiviral signaling triggered by retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), leading to the induction of type I interferon in innate immunity. Previous studies have shown that certain viruses evade the innate immune response by cleaving the MAVS protein. However, little is known about how MAVS is regulated in response to foreign RNA, including both single-stranded (ss) and double-stranded (ds) RNA, because most previous reports have shown that the cleavage of MAVS is executed by proteases that are induced or activated by the invading RNA viruses. Here, we report that MAVS mRNA is degraded in response to polyinosinic-polycytidylic acid (polyI:C), a synthetic dsRNA, in A549 cells. RNA interference (RNAi) experiments revealed that both ssRNA- and dsRNA-associated pattern-recognition receptors (PRRs) were not involved in the degradation of MAVS mRNA. Foreign RNA also induced the transient degradation of the MAVS protein. In the resting state, the MAVS protein was protected from degradation by interferon regulatory factor 3 (IRF3); moreover, the dimerization of IRF3 appeared to be correlated with the rescue of protein degradation in response to polyI:C. The overexpression of MAVS enhanced interferon-β (IFN-β) expression in response to polyI:C, suggesting that the degradation of MAVS contributes to the suppression of the hyper-immune reaction in late-phase antiviral signaling. Taken together, these results suggest that the comprehensive regulation of MAVS in response to foreign RNA may be essential to antiviral host defenses.
منابع مشابه
Identification and Characterization of MAVS, a Mitochondrial Antiviral Signaling Protein that Activates NF-κB and IRF3
Viral infection triggers host innate immune responses through activation of the transcription factors NFB and IRF3, which coordinately regulate the expression of type-I interferons such as interferon(IFN). Herein, we report the identification of a novel protein termed MAVS (mitochondrial antiviral signaling), which mediates the activation of NFB and IRF3 in response to viral infection. Silencin...
متن کاملMAVS self-association mediates antiviral innate immune signaling.
The innate immune system recognizes nucleic acids during viral infection and stimulates cellular antiviral responses. Intracellular detection of RNA virus infection is mediated by the RNA helicases RIG-I (retinoic acid inducible gene I) and MDA-5, which recognize viral RNA and signal through the adaptor molecule MAVS (mitochondrial antiviral signaling) to stimulate the phosphorylation and activ...
متن کاملA Prion-like Trigger of Antiviral Signaling
The MAVS protein plays a critical role in the assembly of an antiviral signaling complex on mitochondrial membranes. Hou et al. (2011) now report that virus infection induces a conformational change in MAVS, leading to the prion-like formation of functional self-aggregates that provide a sensitive trigger for antiviral signaling.
متن کاملViral Defense: It Takes Two MAVS to Tango
To defend cells against viruses, the MAVS (mitochondrial antiviral signaling) adaptor protein initiates an antiviral signaling cascade from mitochondrial membranes. In this issue, Dixit et al. (2010) show that MAVS also localizes to the membranes of peroxisomes, where it rapidly induces expression of a subset of antiviral genes that curb viral replication until mitochondrial MAVS can induce a s...
متن کاملpVHL Negatively Regulates Antiviral Signaling by Targeting MAVS for Proteasomal Degradation.
The von Hippel-Lindau (VHL) gene is a well-defined tumor suppressor linked to human heredity cancer syndromes. As a component of the VHL-elongin B/C E3 ligase complex, pVHL performs its tumor function by targeting proteins for proteasomal degradation. It is largely unknown whether pVHL functions in antiviral immunity. In this article, we identify that pVHL negatively regulates innate antiviral ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012